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1 The determination of what treatment is best for what kinds of patients is a general objective of
clinical research. We consider here the extent to which this objective can be accomplished reliably in a

single clinical trial. '

2 The reliability of subset analyses is often poor due to problems of multiplicity and limitations in
numbers of patients studied. Implications for the design of clinical trials are presented.

3 Statistical approaches to subset analysis are reviewed in a general manner. In order to obtain the
degree of reliability usually demanded of clinical therapeutic evaluations, ‘statistically significant’
interactions between relative treatment efficacy and subsets should be demonstrated. Exploratory
analyses of subset differences are important but should be reported as hypotheses to be tested in

separate studies.

Introduction

Ideally, medical trials should yield reliable and
precise predictions of clinical outcomes as a function
of treatment and patient characteristics. This would
allow appropriate choice of treatments for individual
patients. Such an objective is quite ambitious how-
ever, and this article will discuss to what extent it is
useful as a basis for designing randomized therapeutic
clinical trials.

The strong advantages of randomization will not be
reviewed here. Even among randomized studies how-
ever, one still reads conflicting reports of trials pur-
porting to evaluate the relative benefits of the same
treatments. The reasons for such inconsistencies
include variability in patient selection, treatment
administration, outcome evaluation, inappropriate
data analysis and the statistical properties of large
numbers of studies with modest numbers of patients.
One major factor is the conduct of subset analyses in
an effort to determine which treatment is preferable
for what kinds of patients. Analysing patient subsets
is a natural part of the process of improving thera-
peutic knowledge through clinical trials. But the
naive interpretation of the results of such examina-
tions is a cause of great confusion in the therapeutic
literature. The adopted study designs and methods of
statistical analysis influence the extent to which
erroneous conclusions are likely to result from the use
or non-use of subsets analysis. These issues will be the
topic of this paper.
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Patient selection

Patient selection considerations are important for
two major reasons. First, they determine the target
population of patients to which the major conclusions
of the study will apply. Second, they strongly
influence the reliability and precision of our resulting
therapeutic predictions for individual members of the
target population. These two aspects will be discussed
in turn.

If the conclusions of a clinical trial were not
generalizable to patients other than those actually
included in the study, clinical research would be
futile. The only statistical basis for generalization,
however, is the assumption that the studied patients
constitute a random sample from a larger population.
We rarely, if ever, actually randomly select patients,
but it generally seems reasonable to act as if we had.
The patient selection criteria determine the target
population, and extrapolating our conclusions be-
yond this has little justification. Some investigators
favour broad patient selection so that the conclusions
are applicable to the greatest number of patients. As
we shall see, however, this approach has serious
limitations.

In many clinical trials the patients are hetero-
geneous and the responses are variable. It is for this
reason that statistics plays a major role in the conduct
of these studies. Statistical analysis is no panacea,
however. As we shall see later, the employment of
numerous subset analyses may be accompanied by
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increasing uncertainty about the reliability of con-
clusions. Unless the study was designed large enough
to support the reliable separate analysis of several
initially defined subsets, the basic conclusion of the
study should be the overall comparison of treatments
for all patients randomized. Though this overall com-
parison may be balanced or adjusted for prognostic
factors, the conclusion is generalizable only to a mix-
ture of the same kinds of patients studied in the trial.
The overall comparison addresses the question: If I
must use treatment A or B for all patients in the target

population, which should I use? Though the target’

population may be of impressive size because of
broad patient selection criteria, the conclusion
applies ‘on the average’. )

Correct conclusions for populations can be in-
correct for individuals within the population. For
example, an aggressive therapy may be beneficial to
young ambulatory patients but harmful to older
debilitated patients. If a mixed population is studied
with inadequate numbers for reliable subset analyses,
the conclusion of no average positive or negative
effect of therapy will be erroneous for all patients.
Unfortunately, it is generally impossible to acquire
the number of patients required for reliable evalua-
tion of the many subsets that could be identified as
being of interest. With numerous subsets, the
required number of patients would be huge. Long
before that number could be recruited, one would be
pressed to terminate the study because the average
relative efficacies of the treatments would be estab-
lished only too well. _

No two study patients are exactly alike and no
future patient will be exactly alike one of our study
patients. So at some point it is necessary to settle
upon a target population for whom we are willing to
attempt to reach a reliable overall conclusion about
therapeutic effects. We may hope to perform subset
analyses but should recognize that these will generally
be less reliable. There will be a level of refining our
patient selection criteria beyond which it is not
feasible to obtain sufficient patients for a reliable
study. Some refinements may reduce variability in
outcome and thereby improve the sensitivity of the
resulting study. Other refinements serve to eliminate
patients who are likely only to dilute the sensitivity of
our study for the majority of the target population.
For example, to include in cancer chemotherapy
studies subsets of extremely debilitated patients
whose treatment is already planned to be less than
others is likely to have a diluting effect. Such subsets
are often included because some statistical table said
that n patients were needed and it didn’t specify what
kind.

The argument for relatively narrow patient selec-
tion criteria was emphasized by Sir A.B. Hill in his
description of a Medical Research Council trial of
streptomycin (Hill, 1951): ‘In short, the questions

asked of the trial were deliberately limited and these
closely defined features were considered indispens-
able, for it was realized that no two patients have an
identical form of the disease and it was desired to
eliminate as many of the obvious variations as pos-
sible. This planning . . . is a fundamental feature of
the successful trial. To start out upon a trial with all
and sundry included, and with the hope that the
results can be sorted out statistically in the end is to
court disaster.’

Some statisticians today do not agree with this
viewpoint (Peto et al., 1976). They say, essentially, do
not waste time arguing about whether subsets of
patients should or should not be included in the trial;
if it seems reasonable to include them, then do so. For
extremely large trials where reliable subset analyses
are possible, this viewpoint is reasonable. In other
cases it provides fuel for questionable conclusions
based upon inadequate numbers, has a diluting effect
on the primary comparison and adds subjectivity to
the analysis.

Stratification

Even when the above recommendations are
followed, there will generally remain some hetero-
geneity in the target population with regard to known
prognostic factors. Stratified randomization is often
used to ensure a greater degree of balance of the
treatment groups with regard to these known prog-
nostic factors than can be ensured by pure random-
ization.

Stratified randomization is usually accomplished
by partitioning the patients into mutually exclusive
subsets based upon pre-treatment characteristics
thought to affect prognosis. Within each subset, or
stratum, a pseudorandomization is performed. One
kind of pseudorandomization is the permuted block
design. A permuted block of length 6 for two treat-
ments, A and B, is a sequence of three As and three
Bs. In general for two treatments, a permuted block
of length 2k is a sequence of As and Bs containing
exactly kAs and kBs. The treatment assignment is
determined by a succession of randomly selected
permuted blocks within each stratum. If there are
three treatments, permuted blocks of k instances of
each of three letters are used. Generally, the per-
muted blocks of distinct strata are prepared indepen-
dently of each other.

Though limited stratification is generally desirable,
over-stratification can be detrimental to a trial. With
numerous strata, many will not contain enough
patients by the conclusion of the trial to complete
permuted blocks. Consequently, balance with regard
to the most important factors may be impaired by the
inclusion of secondary factors. Overstratification in
the extreme becomes equivalent to no stratification at



all (Simon, 1980). Details about stratification and
review of new methods that accommodate more
stratification variables are described by White &
Freedman (1978), Pocock (1979) and Simon (1979).
The purpose of stratification is to ensure reasonable
balance between the treatment groups with regard to
prognostic factors. Stratification does not imply that
separate evaluation of relative treatment efficacy will
be performed within each stratum.

It is often desirable to incorporate the stratification
factors into the analysis, in order to increase the
sensitivity of the trial. Treating the known sources of
variability as unknown sources of noise is to be
avoided when possible. To help clarify this point,
consider the illustration in Figure 1. It is assumed that
there are two strata and two treatments. The upper
graph depicts the frequency function, or histogram,
of survival for each of the two treatment groups with-
in each of the two stratum. For purposes of illustra-
tion, the concept of censored survivals s ignored. It is
clear that stratum II patients have a better prognosis
than stratum I patients, because their frequency
functions are displaced to the right. Also, within each
stratum treatment B seems more effective than treat-
ment A. The desirable analysis consists of calculating
an estimate A; of the treatment difference within
stratum I and an estimate Aj; of the treatment differ-
ence within stratum II. A weighted average of A; and
Ay is used as the overall test statistic for evaluating the
statistical significance of the treatment difference. Of
course significance tests could be performed within
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each stratum, but the limited number of patients
usually makes this undesirable because the power of
the test will be small. The variability associated with
the weighted average of A; and Ay, is estimated based
upon the variability for each of four curves at the top
of Figure 1. The treatment differences in the case
shown are reasonably large relative to the variability
of the individual curves, so if the number of patients is
not too small, the comparison will be found
statistically significant.

The bottom illustration is intended to represent a
redrawing of the top illustration, except that the
stratum distinctions are ignored. Each of the two
curves represents a frequency function of survival for
a pooled treatment group consisting of patients from
both strata. Though the two treatment groups may be
perfectly ‘comparable’ with regard to the stratifica-
tion variable, if the pooled groups are compared
directly a significance test having poor power will
result. Thus, when important prognostic variables
can be incorporated into the analysis, the random
fluctuations caused by such variables are in a sense
eliminated from comparison of treatments. Major
improvements in sensitivity are only possible for
strong prognostic variables. However, it is still the
average relative benefit of the treatments for our
target population being evaluated. Some prominent
statisticians believe that, except for small studies,
stratification is an unnecessary complication (Peto et
al., 1976). They point out that stratified analysis can
be performed regardless of whether the randomiza-
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Figure 1 Use of a prognostic factor in analysis.
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tion procedure was stratified and that stratified
randomization contributes little to the average power
of the resulting statistical significance tests. It must be
remembered however that stratification does protect
against chance imbalances that may severely impair
the basic credibility of the study and the ability to
perform a stratified analysis (Lasagna, 1955; Brown,
1980). The fact that these chance events are of low
probability will be of little comfort if they materialize
in a'study.

One point that should be emphasized is that avail-
ability of stratification methods is no justification for
broadening the patient selection criteria. Even where
it is possible to balance the groups with regard to
prognostic heterogeneity, this is generally accomp-
lished at a loss of statistical precision and a loss of
specificity concerning the relevance of conclusions to
individuals within the target population. Stated
differently, the constant relative treatment efficacy
shown in Figure 1 is not generally the case.

Interpretation of subset analysis

The basic problems of interpreting separate analyses
of relative treatment efficacy within patient subsets
can be illustrated as follows. Suppose that we have
randomly assigned treatments A and B and partition
our patients into G mutually exclusive subsets. For
each subset we perform a statistical significance test
and declare a difference ‘statistically significant’ if the
calculated significance level is a or smaller. We obtain
one ‘significant’ difference using a« = 0.05, but
someone points out that even if the treatments are
identical the probability of obtaining at least one
significant result is

1-(1-a)C. )

For a = 0.05 and G = 10 this probability is about 0.40.
That is if the treatments are equivalent for all ten
subsets, there is a 40% chance that at least one differ-
ence will appear ‘significant’ at the 0.05 level. For five
subsets the probability is about 23%. -

For many clinical trials, the number of subsets
which might be examined is far greater than ten.
Multiplying the large number of possible subsets with
the number of outcome measures and the number of
treatment pairs (for studies including more than two
treatments) can result in a very large number of
possible comparisons. These comparisons will
generally not be independent and expression (1)
becomes an upper bound rather than an exact
formula for the probability of obtaining at least one
‘significant’ result by chance alone. Nevertheless,
with many comparisons this probability approaches
unity. For G independent comparisons, the expected
number of ‘significant’ differences by chance alone is
Ga. The crux of the problem of performing many

comparisons is thus that it may not be reasonable to
interpret individual results at face value.

The most frequent approach for dealing with this
problem is the following. Those comparisons of
greatest a priori interest are specified at the outset of
the study. These should be few enough in number so
that a troublesome number of comparisons is not
produced; alternatively, a statistical method is
adopted which adjusts the individual significance
levels for the number of comparisons. For example,
the protocol might state that the major comparisons
are those of the entire two treatment groups with
regard to survival, complete response rate, duration
of responses and toxicities. If the resulting data
suggests treatment differences for other compari-
sons, for example only within a few subsets, this
would be reported as suggestive evidence of a lower
order of reliability to be evaluated in a subsequent
trial. Thus, the data analysis is partitioned to yield
two dividends: the testing of a few pre-specified hypo-
theses, and the generation of new hypotheses by
subset analyses. Clinicians often fail to make this
distinction adequately in reporting work. For
example, Lasagna (1976) comments: ‘I wish the
authors had commented further on the practice of
parcelling out subgroups of patients who allegedly are
specifically benefited (or hurt) by treatment, despite
the absence of statistical differences between the total
groups. This has occurred in both the UGDP and
Coronary Drug Projects. The probability calculations
are by no means clear in such cases, and one would
have thought that the statisticians of the world would
have rallied round the flag and decried such tactics as
anything other than a source of hypotheses to be
tested prospectively in new controlled trials. What we
have seen, instead, is the use of such subanalyses to
come to conclusions in which regulatory decisions are
proposed.’

Introductory statistical courses are generally
oriented to the Neyman-Pearson theory of testing
pre-specified hypotheses. In this theory a statistical
significance test is a decision rule for accepting or
rejecting hypotheses. Many applied statisticians see
the role of analysis more broadly as summarizing
data, estimating effects, and quantitating weight of
evidence (Fisher, 1955; Anscombe, 1963; Cutler et
al., 1966). A significance level of 0.07 conveys more
information than merely that the null hypothesis
should be accepted because the pre-specified type 1
error was 0.05. The distinction between one-sided
and two-sided significance levels becomes critical in
the Neyman-Pearson framework, because it may
represent the difference between accepting and rejec-
ting the null hypothesis. For purposes of summarizing
data and weight of evidence, the distinction is not
critical (though one should always state which type is
used) because the 0.05 cutoff value has no unique
meaningfulness. The hypothesis testing approach is



also not really an adequate framework for medical
decision making, because it forces decisions on the
user where there is insufficient evidence. For com-
paring treatment efficacy it does not consider
whether differences are of practical importance, the
costs and complications of each therapy, the losses
consequent on wrong decisions or prior knowledge
(Cox, 1958).

Although the Neyman-Pearson theory is not really
adequate for describing weight of evidence or for
medical decision making, the concept of dichoto-
mizing hypothesis testing verus hypothesis generation
has several benefits. First, the major comparisons can
be addressed without concern that the findings are
the result of ransacking the data for suggestive
findings. Second, it focuses attention at the design
stage of the deleterious effects of starting ‘out upon a
trial with all and sundry included . . . ’ as stated by
Hill. And finally if results are intelligently and
cautiously reported, it frees one to examine subset
results in the data.

Basic methods for subset analysis

It is widely accepted that claims of therapeutic differ-
ences for subsets of patients are unreliable unless
either an overall difference in therapeutic benefit for
all patients studied has been demonstrated or strong
quantitative evidence is presented that therapeutic
benefit varies among a priori defined subsets. We
first examine the latter condition.

Demonstrating treatment-subset interactions

Suppose that two treatments are compared in a study
and that there are G mutually exclusive subsets of
patients which we are interested in examining. For
the method to be described, it is important that the
subsets not be selected as a result of perusing the
data. They should represent subsets with reasonable
numbers of patients of a priori interest. The usual
analysis of variance model is

Xigt = a5 + by + Cp + €5 )

Xig represents the observed outcome for the i'th
patient in subset g who receives treatment t. a,,a,,
. . . ,ag are unknown constants which represent the
prognostic effect of being in subset g. b, and b, are
unknown constants that represent the average
influences of treatments upon response. The un-
known constants c,; and c,, represent modifications
to average treatment effects for patients in subset g.
The e;;, are assumed to be independent normally
distributed random variables wth mean zero. They
represent experimental variability unrelated to treat-
ment or subset effects.
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The c, terms in equation (2) are called inter-
actions. gIf they are all zero then the influence of
treatment upon survival is uniform for all subsets. In
the usual analysis of variance, the first hypothesis
tested is that ¢, = c,, = 0 for all subsets g. Armitage
(1971) describes how this no interaction hypothesis
can be tested. If the data provides strong evidence for
rejecting this hypothesis then one has a reasonable
basis for abandoning model (2) and comparing treat-
ments separately by subset. Generally, one would
attempt to identify mutually exclusive classes of sub-
sets within which there are no interactions. The
subsets within a class would be pooled, but the classes
would be analysed separately. If there is not strong
evidence for rejecting the no-interaction hypothesis,
then subset analyses are not justified. Model (2), with
the ¢ terms omitted, would be the basis for analysis.
In this analysis the prognostic influences of subsets
are included, but it is only the average treatment
effects for all patients that are compared.

The above approach to subset analysis is useful
even when the specific model (2) is not appropriate.
For many clinical trials the major outcomes are either
binary (e.g. complete remission or no complete
remission) or incompletely observable (e.g. survival).
Survival data is called partially ‘censored’. For a
patient alive at the time of analysis, say four years
after entry to the study, we know only that his or her
survival is at least four years. The true survival is
‘censored’ at four years.

For the binary response case, the analogue of (2)
usually adopted is the logistic model

lOg (pigt/qigt) = ag + bt + cgt' (3)

Pig: TEpresents the probability of a successful outcome
for the i’th patient in subset g who receives treatment
t, and Qi = 1 — Py, The other unknown constants
are as be?ore. The no-interaction hypothesis that all ¢
equal zero can be tested using methods described by
Cox (1970). As before, strong evidence against this
hypothesis is a basis for comparing treatments
separately within subsets.

In the remainder of this paper several approximate
methods of analysis are presented. This information
is not an adequate substitute for collaboration with a
biostatistician. The statistical problems addressed in
this paper are non-trivial, and experimentation with
human subjects is incompatible with using inferior
methods of analysis. Use of the approximate methods
under the conditions described, however, is better
than the frequent practice of totally ignoring the
issues discussed here.

With large sample sizes, an approximate inter-
action test can be performed in the following way for
the logistic model. Let S;; and F,; denote the number
of successes and failures respectively for patients in
subset g receiving treatment 1. Let S, and Fy, denote
these numbers for patients receiving treatment 2.
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Add 1/2 to each of these numbers and call the results
Sgi» fe15 Sp2 and f,. Let

!pg = log (Sslfsz/fglsgz)
wg = 1/(1sy + Uty + Usp + 1fp) (4

and

b=3w/Zw, )

where the summation is over the subsets g and natural
logarithms are used. For a patient in subset g the ratio
of probability of success to probability of failure with
treatment t, p,/qy, is called the odds for success.
Dividing the oétds for treatment one by the odds for
treatment two gives the odds ratio for that subset.
The quantity §), above estimates the log odds ratio
for subset g. Tﬁe quantity 1/w, is the approximate
variance of §,. The quantity § is an average log odds
ratio over alls the subsets. If all the odds ratios are
equal, then there is no interaction and the relative
treatment effect is the same for each subset. This can
be approximately tested by calculating

Z=Zwy(l - Iy ©)
where the summation is over all G subsets. If there is
no interaction then Z should approximately have a
chi-square distribution with G—1 degrees of freedom.
For example with 10 subsets, if Z exceeds 16.9 then
the approximate significance level is less than 0.05
and one has a reasonable basis for examining how
relative treatment efficacy varies among subsets. This
test is only adequate for relatively large sample sizes.
Unless each treatment group within each subset con-
tains at least five successes and five failures, this
approximation should not be used. Even when these
minimal requirements are met, the approximation is
not considered entirely adequate (Fleiss, 1979) and
the more complicated methods of Cox (1970) should
be employed for definitive analysis. The method
presented is useful, however, for exploring whether
more accurate analysis is warranted.

For survival data (or other failure time data) a very
commonly used model is the proportional hazards
model of Cox (1972). For the subset problem this
model takes the following form:

Ag(7) = f(7)exp(ag + b, + cy). @)

The function A, (7) represents the force of mortality
at time 7 for a patient in subset g who received treat-
ment t. It can be thought of as the failure rate or the
probability of death at time 7 for such a patient alive
just before 7. This function is called a hazard function
of a survival distribution. In this model, the hazard
function equals some unknown function of time f(7)
times an exponential function that depends upon the
unknown constants introduced before. As for the
previous models, one can test the no-interaction
hypothesis that all ¢ equal zero. If the treatment

effects are not large, the method of Haybittle (1979)
can be used to perform an approximate evaluation of
the presence of interaction. One calculates

"i\’g = (Ogl - Egl)/ Vgl
and ®

\Vs = VEI

where O, is the observed number of failures with
treatment 1 in subset g, E,,V,, are the Mantel-
Haenszel (Mantel, 1966) expectation and variance of
the number of failures within treatment 1 in subset g
under the null hypothesis that the treatments are
equivalent. Using expressions (5), (6) and (8), an
approximate test for the absence of interactions can
be performed for the proportional hazards model.
The expression for nﬁg given in (8) is an estimator of
the logarithm of the ratio of hazard functions (failure
rates) for treatment 1 relative to treatment 2 within
subset g.

Unfortunately the concept of interaction is model
dependent. For example, with binary responses the
difference in success probabilities between treat-
ments p,—pg; may be constant for. all subsets. This
would represent an interaction in the odds ratio
model. In practice this is generally not a serious
problem. The power of the interaction tests will often
be limited to detecting major reversals of treatment
preference, or a strong treatment preference in one
subset in the presence of treatment equivalence for
the others. A priori, the presence of important true
interactions is unknown whereas the spurious
appearance of variability in relative efficacy among
many subsets is almost a certainty. Consequently it is
prudent to require quantitative documentation that
such apparent differences are not the result of seeking
out chance fluctuations. When ‘statistically signifi-
cant’ interactions are found, however, one must
examine whether it is just a matter of scale of
measurement upon which the model is based.

Tests of average treatment effects

If both an average benefit of one treatment for all
study patients and a significant interaction can be
demonstrated, then careful examination of the varia-
tion in relative benefit among subsets is warranted.
Some statisticians make the demonstration of an
average benefit a strong requirement. For example
(Peto et al., 1976): ‘The fundamental P-value to be
reported is the overall comparison of treatments
adjusted for retrospective stratification. If this is not
significant, it is unwise to conclude without expert
statistical assistance that any treatment differences in
individual strata are real.’

If subsets are only examined when the overall P
value is less than 0.05, then in 95% of the trials for
which there are no real treatment differences, no



apparently ‘significant’ differences will be claimed,
even for subsets. Nevertheless, it seems prudent not
to infer strong conclusions about differences in rela-
tive benefit among subsets unless a significant inter-
action can be demonstrated, regardless of whether
there is an average benefit of one treatment.

The frequently used Mantel-Hanszel test (Mantel,
1966) for an overall comparison of survival adjusted
for the prognostic effect of subsets is equivalent to
calculating

2w, )

based on expressions (5) and (8). Under the null
hypothesis of treatment equivalence within each sub-
set, the above quantity approximately has a chi-
square distribution with one degree of freedon. The
same method can be used for binary responses.

Examining subsets

The most commonly used approach to examining
how relative benefit varies among subsets is use of
separate hypothesis tests for treatment differences
within subsets. This approach may give very mis-
leading results. The statistical significance level is a
function of the sample size as well as the observed
difference. Hence a ‘non-significant’ result for one
subset and a ‘significant’ result for another subset may
correspond to exactly the same observed treatment
differences. Unless the evaluation of treatments with-
in a subset was initially identified as a major goal of
the study, it is unlikely that sufficient numbers of
patients will be available for reliable comparisons of
this type. Use of the ‘significant’ or ‘non-significant’
dichotomy of the Neyman-Pearson theory within sub-
sets, will often yield firm decisions where reliable
conclusions are not possible. It is also possible to
spuriously eliminate a strong overall treatment effect
by decomposing the data into many subsets for
separate analysis.

Calculations of confidence intervals for the treat-
ment differences within subsets is likely to be less
misleading than hypothesis testing. Confidence inter-
vals exhibit a range of true treatment differences
consistent with the subset data and offer less tempta-
tion to confuse ‘not significant’ with ‘not different’.
For the binary response model (3), an approximate
95% confidence interval for the log odds ratio within
subset g is §i;, = 1.96/\/w, given by (4). A log odds
ratio of zero corresponds to treatment equivalence.
The same expression based on (8) provides an
approximate confidence interval for the logarithm of
the ratio of failure rates for temporal data.

Since ys, represents in general a measure of relative
treatment efficacy for subset g, the statement that
relative efficacy for subset g, differs for that of subset
g; is equivalent to the statement Y, + y,. For any
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class consisting of G’ subsets (2 or more), we can test
the hypothesis of uniformity of relative efficacy
among this class by testing the hypothesis that the ys,
within the class are equal. This can be done in the
following way. Define ¢ as in equation (5) but with
the summation over the class in question (perhaps
over two subsets). Z is calculated from (6) with the
same limitation of the summation. Under the hypo-
thesis of constancy of relative efficacy among the G’
subsets in the class, Z will approximately have a chi-
square distribution with G’ — 1 degrees of freedom.
With this approach one can attempt to identify
classes of subsets for which relative efficacy cannot be
demonstrated to differ. For such a class C, the
average relative treatment efficacy, {ic, is given by
equation (5) with the summations over the subsets
within C. The approximate standard error of i is

oc=(1/=wy)"?

again with the summation over C. One can thus test
whether the true pooled Yc = 0 and calculate
approximate 95% confidence limits for Y as §c =
1.96 oc. More accurate methods are described by
Fleiss (1979) and Cox (1970, 1972). The data will
often not be definitive enough to permit mutually
exclusive classes C to be uniquely defined. The inter-
action tests will generally suffer the same lack of
power as the comparison of treatments within indivi-
dual subsets. Nevertheless, if we cannot demonstrate
a difference in relative efficacy between two subsets,
it is more reasonable to utilize their data in a reinforc-
ing way than to force both within subset treatment
comparisons to suffer from lack of power.

The same type of analysis can be peformed with
survival data without adopting the proportional
hazards model. Suppose, for example, we adopt as
one measure of outcome the probability of surviving
at least two years from start of treatment. We can
estimate the probability p,, for patients in subset g
receving treatment t using the Kaplan-Meier method
as described in Peto et al. (1976). Although this
estimate will generally utilize survivals ‘censored’
before two years, Peto ez al. (1976) also point out that
the estimate is about as precise as if we had ry,/p,, total
patients all followed for a complete two year period
where r,, is the number of patients actually alive and
followeét for at least two years. Consequently the
analysis of variation of treatment influence on two-
year survival can be approximately performed by the
binary response methods outlined above. We assume
that there are r, ‘successes’ and (1 — Pgt)Tge/ Pt
‘failures’ among the patients in subset g receiving
treatment t.

If there are numerous subsets, then the general
approach outlined above may produce spurious indi-
cations of differences in relative efficacy. For
example suppose that there are 50 subsets, that rela-
tive treatment efficacy is the same for 49 but very
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different for one and we obtain a statistically signifi-
cant overall interaction test. There will be 1176 (= 49
x 48/2) possible pairwise comparisons among subsets
in which relative efficacy is actually the same. If these
comparisons were independent, we would expect
about 59 spurious claims of ‘statistical significance’ at
the 5% level. Since the comparisons are dependent,
the expected number may be less than 59, particularly
since some subsets may be small. But clearly, the 5%
criterion is inadequate. A variety of ‘multiple com-
parison’ procedures have been developed to deal with
this problem (Miller, 1966). If there are no more than
10 subsets, however, and if pairwise comparisons are
only performed when the overall interaction test is
significant at the 0.05 level, then the general approach
outlined above (though not necessarily the particular
methods) should be adequate.

For those who insist on performing hypothesis
tests within each subset when no average treatment
benefit or no overall interaction is demonstrated, and
for those of us who must continue reading their
papers, a reduced significance level is required to
avoid numerous false positive results. In order to
ensure a probability no greater than 0.05 that at least
one of G treatment-within-subset comparisons will be
declared significant by chance alone, it is sufficient
that a cutoff level of ‘significance’ of 0.05/G be used
for each individual comparison (Tukey, 1977).

Determining subsets

The discussion above assumes that certain natural
subsets are of a priori interest. In attempting to better
understand therapeutic results, however, it is reason-
able to search a large body of data for ways to define
subsets for which one treatment or the other is
superior. Though no theory of how to best do this has
been devised, Byar & Corle (1977) have developed
and illustrated the use of multivariate regression
methods for this purpose. There is subjectivity in
this process and methods of estimating reliability of
the predictions have not been adequately developed.
Byar & Corle (1977) comment: ‘Possibly the greatest
value of this sort of analysis is heuristic—it suggests
relationships which might not have been apparent by
more conventional methods. The proof of any con-
clusions tentatively drawn must depend on future
experiments designed specifically to test the results
suggested by the analysis.’

The thorough examination of data resulting from
a good clinical trial is certainly warranted. The
development of new statistical tools for the
exploratory analysis of subsets is a useful area of
research. The good advice of Byar & Corle (1977)
should be remembered, however, in reporting or
reading the results of such an analysis.

Subsets determined after the start of treatment

The previous sections have assumed that the patient
subsets are determined by baseline characteristics of
the patient and his or her disease. In some studies
subsets are determined by events occurring after the
start of therapy. For example, Bonadonna &
Valagussa (1981) have attempted to evaluate adju-
vant chemotherapy for the subset of postmenopausal
breast cancer patients who received adequate doses.
Other reports attempt to analyse the subset of
patients who fully comply with treatment administra-
tion. A danger with such analyses is that the subset
definition may inadvertently select non-comparable
patients for the two treatments. One of the largest
differences in mortality reported by the Coronary
Drug Project was between the good compliers and
poor compliers in the placebo group. This striking
finding could not be adequately accounted for by
imbalances in about 40 baseline variables considered
(Coronary Drug Project, 1980). Consequently one
should be cognizant of possibility for bias in the
evaluation of such subsets (Canner, 1981).

Conclusion

An important objective for clinical research is to
determine reliably which treatment is best for what
kinds of patients. This broad objective is not achiev-
able in most clinical trials, however, because of
limitations in the number of patients studied. More
realistic goals for most clinical trials are: (1) develop
reliable conclusions about average relative treatment
efficacy for groups of patients selected initially on
coherent clinical grounds; and (2) generate hypo-
theses to be tested in later studies about relative
efficacy for subsets of patients. If the study is planned
so that adequate numbers of patients are recruited
within several subsets defined a priori, or if there are
obvious differences in relative effiacy among such
subsets, then greater progress towards the broader
objective is possible.

The hypothesis generation part of the analysis is
very important, but findings are often reported as
being definitive. The problem of subset multiplicity is
often not acknowledged, and authors seldom try to
measure the strength of evidence for variations in
relative treatment efficacy among subsets. It is not
dishonorable to thoroughly examine carefully
collected data for therapeutic leads. Statistical
naiveté and failure to exercise caution and sound
scientific skepticism in reporting results, however,
adds confusion to the therapeutic literature.

The difficulties of deriving reliable conclusions
about therapeutic efficacy for subsets should be



recognized in developing the patient selection criteria
for the study. One should try to ensure that a clear
picture of the average therapeutic benefit for a medi-
cally meaningful target population taken as a whole
will be obtained or that adequate numbers of patients

are accrued for independent analysis of pre-specified.

subsets. Too many studies include very hetero-
geneous subsets of patients because the investigators
want to do a study that is really not feasible with the
small number of patients they see. Conclusions from
subset analyses generally are of a lower order of
reliability than the conclusion of average benefit. The
latter must not be sacrificed in an attempt to achieve
too much.

Tukey (1977) distinguishes a “clinical inquiry’ from
a ‘focused clinical trial’. In the former we study
heterogeneous patient populations and hope to
determine the preferred treatment for many subsets.
In the latter, only a single type of outcome is to be
evaluated for a single defined population of patients.
Because of problems inherent in interpreting multiple
subset analyses, he concludes: ‘. . . I do not believe
that a clinical inquiry, by itself, is likely to be an
ethically satisfactory means of providing definitive
evidence that an intervention or therapy is an
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